3 resultados para Nefropatia Ig A

em DI-fusion - The institutional repository of Université Libre de Bruxelles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Serologic methods have been used widely to test for celiac disease and have gained importance in diagnostic definition and in new epidemiologic findings. However, there is no standardization, and there are no reference protocols and materials. METHODS: The European working group on Serological Screening for Celiac Disease has defined robust noncommercial test protocols for immunoglobulin (Ig)G and IgA gliadin antibodies and for IgA autoantibodies against endomysium and tissue transglutaminase. Standard curves were linear in the decisive range, and intra-assay variation coefficients were less than 5% to 10%. Calibration was performed with a group reference serum. Joint cutoff limits were used. Seven laboratories took part in the final collaborative study on 252 randomized sera classified by histology (103 pediatric and adult patients with active celiac disease, 89 disease control subjects, and 60 blood donors). RESULTS: IgA autoantibodies against endomysium and tissue transglutaminase rendered superior sensitivity (90% and 93%, respectively) and specificity (99% and 95%, respectively) over IgA and IgG gliadin antibodies. Tissue transglutaminase antibody testing showed superior receiver operating characteristic performance compared with gliadin antibodies. The K values for interlaboratory reproducibility showed superiority for IgA endomysium (0.93) in comparison with tissue transglutaminase antibodies (0.83) and gliadin antibodies (0.82 for IgG, 0.62 for IgA). CONCLUSIONS: Basic criteria of standardization and quality assessment must be fulfilled by any given test protocol proposed for serologic investigation of celiac disease. The working group has produced robust test protocols and reference materials available for standardization to further improve reliability of serologic testing for celiac disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypogammaglobulinemia (hypo-Ig) and low mannose binding protein (MBP) levels might be involved in the infectious risk in renal transplantation. In 152 kidney transplant recipients treated with calcineurin inhibitors (CNI) and mycophenolate mofetil (MMF), during the first year, we prospectively recorded the incidence of hypogammaglobulinemia, and low MBP levels. Their influence on infectious complications was evaluated in 92 patients at 3 and 12 months (T3 and T12). The proportion of deficiency increased significantly: hypo-IgG: 6% (T0), 45% (T3), and 30% (T12) (P < 0.001); hypo-MBP: 5%, 11%, and 12% (P = 0.035). Hypo-IgG at T3 was not associated with an increased incidence of first-year infections. A significantly higher proportion of patients with combined hypogammaglobulinemia [IgG+ (IgA and/or IgM)] at T3 and with isolated hypo-IgG at T0 developed infections until T3 compared with patients free of these deficits (P < 0.05). Low MBP levels at T3 were associated with more sepsis and viral infections. Hypogammaglobulinemia is frequent during the first year after renal transplantation in patients treated with a CNI and MMF. Hypo-IgG at T0 and combined Igs deficts at T3 were associated with more infections. MBP deficiency might emerge as an important determinant of the post-transplant infectious risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunoglobulin superfamily (IgSF) domains are conserved structures present in many proteins in eukaryotes and prokaryotes. These domains are well-capable of facilitating sequence variation, which is most clearly illustrated by the variable regions in immunoglobulins (Igs) and T cell receptors (TRs). We studied an antibody-deficient patient suffering from recurrent respiratory infections and with impaired antibody responses to vaccinations. Patient's B cells showed impaired Ca(2+) influx upon stimulation with anti-IgM and lacked detectable CD19 membrane expression. CD19 sequence analysis revealed a homozygous missense mutation resulting in a tryptophan to cystein (W52C) amino acid change. The affected tryptophan is CONSERVED-TRP 41 located on the C-strand of the first extracellular IgSF domain of CD19 and was found to be highly conserved, not only in mammalian CD19 proteins, but in nearly all characterized IgSF domains. Furthermore, the tryptophan is present in all variable domains in Ig and TR and was not mutated in 117 Ig class-switched transcripts of B cells from controls, despite an overall 10% amino acid change frequency. In vitro complementation studies and CD19 western blotting of patient's B cells demonstrated that the mutated protein remained immaturely glycosylated. This first missense mutation resulting in a CD19 deficiency demonstrates the crucial role of a highly conserved tryptophan in proper folding or stability of IgSF domains.